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Some Considerations of Fluid Interfaces 
in Two Dimensions 
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Basic assumptions of the capillary wave theory of fluid interfaces are examined 
critically as a function of space dimensionality d. When the predictions of 
capillary wave theory are compared with those of the nonclassical Maxwell-van 
der Waals theory, agreement is found in d =  3 and 4, but strong disagreement 
occurs in d =  2. It is shown that the total effective mass density obtained from 
the Hamiltonian describing the collective capillary wave excitations has a 
logarithmic divergence in d = 2. This result suggests the possibility of anomalous 
behavior for fluid interfaces in d =  2. 
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1. I N T R O D U C T I O N  

When two fluid phases coexist in the presence of gravity, they are separated 
by a planar diffuse interface of finite thickness. In three or fewer dimensions 
of space, a macroscopic external field is essential to maintain a finite inter- 
facial thickness. (la,b) Gravity is explicitly taken into account in the capillary 
wave theory of fluid interfaces, while it is ignored in conventional theories 
of the Maxwell(2a)-van der Waals type (2bl in order to simplify the analysis. 4 

Capillary wave theory requires a density of modes, an upper cutoff on 
allowable wave vectors and an effective mass. Designed for low 
temperatures, (3) this theory can be extrapolated into the near-critical 
region, (la) although not strictly up to the critical point itself. (4) 
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Table I, Critical Exponent of Interfacial 
(Z2~)1/20C ( To-- T) - =  

as a F u n c t i o n  of Dirnensionality d 

Thickness 

d 2 3 4 

mc ~ 9/32 ~0.64 1/2 
(DMW b 1 ~0.64 1/2 

o) C denotes prediction of capillary wave theory. 
be)raw denotes prediction of nonclassical Maxwell-van der Waals 
theory. 

It has recently been observed (5) that in two dimensions of space, 
capillary wave theory predicts a critical behavior of the interfacial thickness 
which differs significantly from that predicted by the nonclassical (6) 
Maxwell-van der Waals theory. In three dimensions or more, these 
theories make identical predictions, (51 expressing the insensitivity of critical 
behavior to macroscopic external fields such as normal gravity. For general 
dimension d, their predictions are compared in Table I, where co is the 
critical exponent describing the divergence of the interracial thickness as 
the critical temperature is approached. Note the nonmonotonic behavior of 
coc, the value of co predicted by capillary wave theory, as a function ofd. 

In this paper, we discuss critically basic assumptions of capillary wave 
theory such as density of modes, cutoff, and effective mass density. The 
analysis confirms earlier agreements between the predictions of capillary 
wave and nonclassical Maxwell-van der Waals theories in d = 3 and 4, but 
suggests that the behavior of fluid interfaces may be anomalous in d =  2. 

2. DERIVATION OF RESULTS 

2.1. Analysis of Basic Assumptions of Capillary Wave Theory 

In capillary wave theory, one considers a microscopically sharp inter- 
face which undergoes thermal fluctuations restored by gravity and surface 
tension. These thermal modes are characterized by: a wave vector k e R d- 1, 
a density of modes g(k), a cutoff k . . . .  a dispersion relation co(k), and an 
effective mass m(k). 

With L the edge length of the system assumed for simplicity to be 
hypercubic, a Rayleigh-Weyl enumeration gives 

g(k)ocL d ~k a-2 (1) 
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so that the total number N of modes of wave number k smaller or equal to 
km~x is 

~ kmax 

Noc g(k) dk 
"0 (2) 
L d l k d -  1 

" m a x  

At low temperatures, kma x may reasonably be chosen as km~ X ~ ~/a, 
with a some atomic distance. But more generally, when the theory is 
extrapolated into the neighborhood of the critical temperature T,., where 
the interface disappears, one clearly must have N ~ 0, so that, according to 
(2), km~ must vanish in that limit. A dimensional argument ~1~) yields 

7E 

kma x oc interracial thickness (3) 

For d t> 3, interfacial thickness and bulk correlation length are propor- 
tional to each other. (5/Result (3) can be interpreted as expressing the fact 
that capillary waves, as collective modes, are ill defined when their 
wavelength is smaller than the interfacial thickness or, for d~> 3, the bulk 
correlation length. This cutoff kmax is similar to the high-frequency cutoff 
used by Debye in his theory of specific heat of solids and has been used in 
other applications of capillary wave concepts. (7) 

It should be stressed that it is only with the choice (3) that capillary 
wave theory yields, (5) for d~> 3, the hyperscaling-like relation /~= 1 + r =  
( d -  1)co, where # is the critical exponent describing the vanishing of the 
surface tension as T ~  Tc and r is Guggenheim's exponent. According to 
the simplified version of the Maxwell-van der Waals theory, which ignores 
the effect of gravity, ~o = v for all d, with v the critical exponent describing 
the divergence of the bulk correlation length as T ~  Tc. 

It is interesting to observe that interfacial theories give the correct 
values of the critical exponents when d =  4. This follows from the well- 
known results (8) r = v = 1/2 of mean-field theory. 

2.2. Ef fect ive  Mass of Capi l lary  W a v e s  

Conventionally, capillary wave theory takes as its starting point the 
work of deformation W of a single-valued distortion z(x) of the interface. 
Decomposing z into its elementary excitations z(x) = Zk ake ik" gives in the 
linearized theory (la~ 

W(z) oc �89 d-~ ~ [(p~ - p~) g + 7o kz] a~ (4) 
k 
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with p~ and p~ the mass densities of the coexisting phases ~ and fl, g the 
acceleration of gravity, and 7o the bare surface tension. 

It is however more useful for our purpose to consider the Hamiltonian 
which describes capillary waves as collective modes. This Hamiltonian 
assumes the form (9a) 

where the effective mass is given by 

P~ + PB . d -  1 m(k ) oc - - ~  L (6) 

and where, according to the classical dispersion relation, (1~ 

o~2(k) = P~ - Pa gk + ~k-~--3 (7) 
P~+P~ P~+P~ 

Hamiltonian (5) is required for the theory of quantum interfaces. (9b) 
The first term in (5), which yields m(k) as given by (6), arises from a 

classical hydrodynamic calculation of the kinetic energy, (HI where m(k) 
represents the effective inertia of a surface wave of wave number k. (12) 

The potential energy term in (5) reduces to the conventional work 
term given by Eq. (4): 

W= �89 Z re(k) co2(k) a~ (8) 
k 

In terms of the effective mass, the optically observed mean-square dis- 
placement of the interface, (z  2), is proportional to 

fo kma• g(k) 
m(k) e~2(k) dk 

For the total effective mass density per unit interfacial area, fit, we 
have from (1) and (6) 

fit = IO kmax m(k) g(k) dk 
L d- I  I kmax g(k) dk 

(9) 

t 1 d > 2  
OC (p~ d- p/~) kmax' kmax 

---[--1 Ink  d = 2  
kmax 0 
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It is seen that the case d =  2 is anomalous in that the total effective 
mass density per unit interfacial area, rh, is regular for all d >  2, while it is 
logarithmically divergent for d = 2. 

This divergence of the total effective mass density in d = 2 occurs for 
all subcritical values of the temperature, and is induced by the modes of 
small wave numbers. We note that while the capillary wave prediction 
o~4:v holds for d <  3, the total effective mass density only diverges for 
d~<2. 

The effective mass is, from equipartition, directly proportional to the 
fluctuation in momentum and inversely proportional to the fluctuation in 
position. It is not directly measurable but does determine, as seen above, 
the optically observable quantity (z2). 

2.3.  S u r f a c e  T e n s i o n  

The optically observable quantity ~Z 2 ) is related in an exact way to 
the measured surface tension 7 in a gravitational field. We have indeed (14) 

f + oo m g c + ~176 ~zz ~= -oo (ffTi~YN) dZ-I-'~-J--oo Z2 dz (lO) 

where aT(N) denotes the tangential (normal) component of the stress ten- 
sor, m the mass of a molecule, and z the vertical distance accross the inter- 
face (to be distinguished from the instantaneous location z(x) of the inter- 
face introduced above). The second term in the right-hand side of (10) is 
proportional to (Z2).(15) 

In terms of the capillary length a = (27/Jp g)1/2, (10) can be rewritten 
as: 

y=(f+~ (~r--aN)dZ)/( l  + (zZ)/a z) (11) 

Note that in the right-hand side of (11) the external field, explicitly present 
in the denominator, is implicitly contained in the numerator, which is given 
by the exact version of density gradient theory. (16) 

Result (11) leads, for a2>> (z2),  to the following extended scale form: 

7(zZy(a-,)i2={ a 2 a 2 

k T  t<Z2)) (12) 
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For d~> 3, we have ((d) = 0. For d =  2, we find, using the exact values (17a'b) 
# = 1 and fl = 1/8 of the critical exponents of surface tension (17a) and order 
parameter (17b) of the lattice gas: 

1 - f o  
( ( 2 ) -  - -  (13) 

209 + 7/8 

suggesting 0~<((2)~< 1/2, with 1/2 the value given by the linearized 
capillary wave theory, for which o~ = 9/32. (5) It may be noted that the exact 
form (13) of the interfacial density profile of the infinite two-dimensional lat- 
tice gas in the absence of a macroscopic external field, but with distances 
rescaled on the scale of the fluctuations, yields (13a) 09= 1/2 and therefore, 
from Eq. (13), ( (2)=4/15;  this value does lie within the above suggested 
range. The same result obtains (13b) for another definition of the interfacial 
thickness in the same model, which however remains finite on the scale of 
the lattice spacing, diverging only at the critical point. 

The Maxwell-van der Waals theory implies 

= const (14) 
kT  

satisfying (12) with ~ = 0  and f = c o n s t .  However this theory explicitly 
ignores any external field such as gravity, while such a macroscopic field is 
essential to obtain nontrivial equilibrium interfaces in d~< 3. Relation (12) 
therefore appears more general and suitable to describe the equilibrium 
properties of fluid interfaces in the presence of external fields: the effect of 
the macroscopic external field, hidden in d > 3, manifests itself strikingly in 
d = 2 .  

3. D I S C U S S I O N  

The above analysis confirms the earlier observation (5/that in d =  3 and 
4, the predictions of capillary wave and nonclassical Maxwell van der 
Waals theories are concordant. It suggests that the behavior of fluid inter- 
faces in d =  2 may be anomalous. Although the exact value of co, the 
exponent describing the divergence of the interfacial thickness at the critical 
point, is not known, this work does suggest the following behavior of near- 
critical interfaces between fluid phases in two dimensions: near the critical 
point in d-- 2, the predictions of capillary wave theory may be qualitatively 
valid; but very close to the critical point, there may be, because of the very 
weak singularity in the total effective mass density, a crossover from the 
singular capillary wave behavior of the interfacial thickness to a different 
singular behavior. 
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This view is suppor ted  by the observat ion that  in d =  2, the diverging 
total effective mass density r~ corresponds,  in a hydrodynamic  description, 
to a diverging mean  generalized inertia: n~ is propor t iona l  to the mean 
generalized inertia of a fluid in which a surface wave of  wavelength k - i  
carries with it a layer of  fluid of  depth approximate ly  equal to rn(k). (12) 
Consequently,  this diverging inertia inhibits the surface's excitations, 
making the interface less diffuse and yielding a weaker divergence of the 
interfacial thickness in d = 2. 
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N O T E  A D D E D  IN P R O O F  

It may  be ment ioned that  the predictions of  capillary wave theory, 
originally derived on the basis of phenomenologica l  concepts (Ref. la)  and 
recently proved from first principles (Ref. lb),  have also been verified 
numerically in two dimensions of space by machine simulations (J. H. 
Sikkenk, H. J. Hilhorst  and A. F. Bakker, Phys ica  131A; 587 (1985)). 
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